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Non-hookean stress-strain response and changes 
in crystallite orientation of carbon fibres 
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O-okayama, Meguro-ku, Tokyo 152, Japan 

The non-hookean stress-strain response of carbon fibres was investigated in relation to 
changes in crystallite orientation with tensile stress. Various one-dimensional array models 
and a mosaic model were examined. Amongst these models, only the mosaic model in 
which the stress of the crystallites can be transmitted in both the transverse and the axial 
directions showed any quantitative agreement with the measured increases in the tensile 
modulus and the crystallite orientation with tensile stress. This suggests that deformation of 
the crystallites is constrained with increasing tensile stress. It was also found that the ratio of 
the tensile stress of the fibre to that of the crystallites is close to the crystallite volume 
fraction rather than the ratio of the fibre density to the crystallite density. 

1. Introduction 
The tensile modulus of carbon fibres increases with an 
increasing tensile stress applied to the fibres [1-6]. 
This non-hookean stress-strain response has also 
been observed for carbon fibre products in various 
forms such as unidirectional composites [4, 7-12] and 
multidirectional laminates [13]. The non-hookean 
stress-strain response of carbon fibres is reversible 
[1, 14] and it is unaffected by the cycles of loading and 
unloading up to at least 40% of the tensile strength 
[5, 12]. This suggests that the non-hookean 
stress-strain response of carbon fibres is not due to 
either partial destruction of the fibre structure or plas- 
tic deformation of the materials. 

In the case of polyacrylonitrile (PAN)-based carbon 
fibres the increase in tensile modulus with tensile stress 
tends to be higher for fibres with a higher initial tensile 
modulus. Also; the rate of increase in the tensile 
modulus normalized by the initial tensile modulus 
against tensile stress takes a constant value of about 
0.1 GPa-1  independent of the initial tensile modulus 
[12]. 

Carbon fibres consist of an assembly of crystallites 
which are parallel stacks of carbon layers similar to 
graphite. However, the relative displacements of the 
carbon layers in the direction parallel to the layer 
plane are not as regular as in graphite. The stacking 
regularity depends on the starting materials and pre- 
paration conditions of the carbon fibres [15]. 

Graphite is mechanically anisotropic and its stiff- 
ness parallel to the layer plane is 1060 GPa while, the 
stiffness normal to the layer plane is only 36.5 GPa. As 
is expected from this mechanical anisotropy of gra- 
phite, the tensile modulus of carbon fibres strongly 
depends on the crystallite orientation. Generally, car- 
bon fibres with a higher orientation of the carbon 
layer s in the direction of the fibre axis develop a higher 
tensile modulus. 

The crystallite orientation of carbon fibres also cha- 
nges with tensile stress applied to the fibres [1] and 
increases with increasing tensile stress. The rate of 
increase in the crystallite orientation with tensile stress 
tends to be higher for fibres having lower initial crys- 
tallite orientation [16]. Thus the tensile stress depend- 
encies of the tensile modulus and the crystallite ori- 
entation, found for specified carbon fibres, are ex- 
pected to be consistent with the relationships between 
the initial tensile modulus and the initial crystallite 
orientation observed amongst carbon fibres of differ- 
ent types. However, a functional relation between the 
tensile modulus and the crystallite orientation at vari- 
ous stresses differs from that found between the initial 
tensile modulus and the initial crystallite orientation 
for various carbon fibres [14]. This implies that the 
crystallite orientation is not a decisive factor deter- 
mining the tensile modulus of carbon fibres. 

Various mechanical models of carbon fibres have 
been proposed in order to explain the relationships 
between the tensile modulus and the crystallite ori- 
entation [6, 17, 18]. However, it has not yet been veri- 
fied whether or not these proposed models can explain 
the stress-strain response associated with changes in 
the crystallite orientation with tensile stress. 

In the present study, the changes of the tensile 
modulus and the crystallite orientation with tensile 
stress for carbon fibres have been analysed on the 
basis of a detailed experimental investigation. The 
various mechanical models currently available have 
been critically examined and a new model is proposed. 

2. Stress-strain response and 
orientation changes 

2.1 Preparation of composite specimens 
Commercial PAN-based carbon fibres with various 
tensile moduli were used for the experiments. These 
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fibres were in the form of tow comprising 2000-12 000 
filaments depending on the specific fibre type. 

The measurement of the stress-strain response and 
the X-ray diffraction were made on carbon fibre/ep- 
oxy resin unidirectional composite strands under ten- 
sile stress. A resin system comprising 49.9 parts by 
weight (p.b.w.) diglycidil ether of bisphenol A type 
epoxy resin, 49.9 p.b.w. 4-methyl hexahydrophthalic acid 
anhydride and 0.2p.b.w. 1-butyl-2-methylimidazole 
were used as the matrix. A carbon fibre tow was first 
soaked in the resin, and passed through a circular die in 
order to squeeze out any excess resin. Then the resin 
impregnated tow was cured at 110 ~ for 1 h and then 
post-cured at 150 ~ for 3 h. The volume fraction of 
carbon fibres in a composite strand was about 0.6. 

2.2 Stress-strain response 
The stress-strain response of composite strands was 
measured with a tensile tester equipped with pneu- 
matically actuated clamps. The gauge length of the 
specimen was 100 mm, and the cross head speed was 
0.5 mm min-1. The elongation of the specimen was 
measured with a clip-on extensometer. The 
force-elongation signals were recorded at a time inter- 
val of 50 ms with a microcomputer. 

The tensile stress of the carbon fibres in a composite 
strand was calculated by dividing the tensile force 
applied to the composite strand by the cross-sectional 
area of the carbon fibres in the composite strand, 
ignoring a small force supported by the matrix resin. 
The cross-sectional area of the carbon fibres in the 
composite strand was calculated from the mass per 
unit length and the density of the carbon fibres. The 
fibre density was determined by a sink-float method. 

The tangent modulus E of carbon fibres was cal- 
culated from the stress-strain response according to 
the definition, 

e = \a~/ (1) 

where cr and e are the tensile stress and the tensile 
strain of the carbon fibres, respectively. The changes of 
the tangent modulus with tensile stress for a series of 
PAN-based carbon fibres are shown in Fig. 1. Each 
data point is the average of five composite strands. 

From Fig. 1, the tangent modulus at zero tensile 
stress was determined by extrapolating the changes in 
the tangent modulus at lower tensile stresses to zero 
tensile stress, since there is a possibility that the slight 
bending of the composite strand, when gripped with 
the pneumatically actuated clamps, could produce an 
inaccurate tangent modulus at start of tensile loading. 
These extrapolated values, as well as the succeeding 
tangent moduli under tensile stress, were consistent 
with tensile moduli determined in ultrasonic experi- 
ments [12]. 

2.3 Changes of orientation with tensile 
stress 

The changes in the crystallite orientation with tensile 
stress were measured by using the 002 diffraction peak 
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Figure 1 Tangent  modulus  E of PAN-based carbon fibres plotted 
against tensile stress cr of fibre. Different fibres are shown by 
different symbols, 

with an X-ray diffraction apparatus attached to a ten- 
sile tester 1-16]. A pinhole-collimated and nickel-fil- 
tered CuK~ X-ray beam was incident perpendicularly 
on a composite strand held with pneumatically ac- 
tuated clamps. The diffracted X-ray beam was detec- 
ted with a linear position sensitive proportional 
counter (PSPC) through a metal arc-slit attached to 
the entrance window of the PSPC. In this manner, the 
intensity distribution, as a function of the azimuthal 
angle, of the 002 diffraction peak was measured at 
desired time intervals while stretching a specimen at 
a cross head speed of 0.5 mmpermin.  The gauge 
length of the specimen was 100 ram. 

In the case of carbon fibres with a high crystallite 
orientation such as those used in the present study, the 
distribution density function g(~) of the orientation 
angle ~ between the normal of the carbon layer and 
the fibre axis can be closely approximated by an 
orientation distribution function of the form [16] 

where 

g(~) = K s i n ~  (2) 

2 3/2F( ) 
in 2 

co = - (4) 

At is the full-width at half-maximum of g(~), and F(x) 
is a gamma function having the following property 

F(x + 1) = xF(x) (real x > 0) (5) 

By defining ( p )  as the average of an arbitrary para- 
meter p with respect to the orientation distribution 
function, the orientation distribution function is nor- 
malized such that 

( 1 )  = 1 (6) 
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Figure 2 Orientation parameter FI of PAN-based carbon fibres 
plotted against tensile stress c~ of fibre. Symbols correspond to Fig. 1. 

where 

f0 @) = 2n sin {9({)p d~ (7) 

The average of sin"~ which often appears in later 
sections is calculated as 

(co + l)(m + n) 
(sin" ~) = 

co(m + n + 1) 

In the present study, as an extent of the crystallite 
orientation, the orientation parameter FI defined as 

17I = 1 A t  (9) 
7t 

is used. By determining experimentally this orienta- 
tion parameter, the orientation distribution function 
of Equation 2 is obtained according to the relations of 
Equations 3,4 and 9 .  

Fig. 2 shows the variation of the orientation para- 
meter with tensile stress for a series of PAN-based 
carbon fibres. The relation between the crystallite ori- 
entation parameter II and the tensile stress ~ in G P a  
can be approximated by an empirical equation, 

[I = 0.029(1 - Fio)Cy + I1o (10) 

where FIo is the crystallite orientation parameter at 
zero tensile stress [16]. 

On the basis of the tangent modulus versus tensile 
stress relation in Fig. 1 and the crystallite orientation 
versus tensile stress relation in Fig. 2 the tangent 
modulus is plotted against the crystallite orientation 
in Fig. 3. In Fig. 3, the continuous line represents the 
relation between the initial values of the tangent 
modulus and the crystallite orientation for carbon 
fibres of various types. Under tensile stress the tangent 
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Figure 3 Tangent modulus E of PAN-based carbon fibres at vari- 
ous tensile stresses plotted against orientation parameter II. The 
curve approximates the relation between initial tangent modulus 
and initial orientation parameter for various fibres. Symbols corres- 
pond to Fig. 1. 

modulus increases with the crystallite orientation at 
a faster rate than observed in the relation between the 
initial values of the tangent moduli and the crystallite 
orientation. 

3. One-dimensional array models for 
non-hookean stress-strain response 
with orientation changes 

The mechanical models for explaining the relation- 
ships between the mechanical properties and structure 
may be classified into two types, one is a model com- 
prised of a series combination of crystallites, and the 
other a parallel combination of crystallites. These 
models will be called one-dimensional array models in 
the sense that in these models the crystallites are 
arranged in a one-dimensional array. 

3.1 One-dimensional array models 
3. 1.1 Undulating ribbon model 
In the undulating ribbon model shown in Fig. 4, it is 
assumed that the parallel stack of ribbon-like carbon 
layers undulates in such a way that the normal vectors 
of the carbon layers at any position are coplanar. 
The configuration of undulation is determined so 
that the distribution of the layer normals coincides 
with the orientation distribution function. The undu- 
lating ribbon is comprised of a series combination 
of undulating elements which are constant in config- 
uration and have an undulation of a unit cycle. 
Then the modulus of the whole undulating ribbon 
equals that of the undulating element. The undulating 
ribbon has a rectangular cross-section with the 
layer stacking height h and area A. Both the ends of 
the undulating ribbon are aligned in parallel to the 
fibre axis. 
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Figure 4 Schematic illustrations of undulating ribbon, zigzag rib- 
bon, series elements, series rotatable elements, parallel elements and 
mosaic models. 

The deformation of the undulating ribbon can be 
analyzed by using the theorem of Castigliano. Con- 
sider that the undulating ribbon is a perfectly elastic 
body subjected to a force F causing, at the loading 
point, a component of displacement z in the same 
direction as the applied force. If the elastic strain 
energy stored in the undulating ribbon is denoted by 
U, then the displacement is generally represented by 

~U 
Z = - -  (11)  

8 F  

If the height h is sufficiently smaller than a radius of 
curvature of the undulation, and if the shear force in 
the cross-section can be ignored, then an elastic strain 
energy dU stored in an element of length dL formed 
by two cross-sections is given by 

MZsl t dU N2s11 dL + dL (12) 
- 2 A  - - S Y -  

where N and Sll are respectively the force and the 
compliance normal to the cross-section, M the bend- 
ing moment, and I the second moment of area of the 
cross-section. 

Introduce a Cartesian coordinate (x,y) to the 
undulating element so that one end of the element 
locates on the origin and the other end aligns on the 
x-axis at x = Xo. The y-axis is arranged to be coplanar 
with the normal vectors of the carbon layers. The 
locus of the centreline of this element is represented by 
y =f(x) ,  and define the length L measured along the 
centreline to be zero at x = 0 and Lo at x = Xo. The 
angle between a normal vector of the carbon layer and 
the x-axis is denoted by ~. 

When both ends of the undulating element are sub- 
jected to a tensile force F, the following relations are 
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obtained. 

N = sin {F (13) 

M = f ( x ) F  (14) 

Ah 2 
I = (15) 

12 

Therefore, the tangent modulus Ef of the undulating 
ribbon is given by 

/o :~  12 2 \ d L  1 _ d ( z / xo )_  Sll sin:~ + ~ f  ) 
Ee d(F/A) xo 

(16) 

where ~ and dL can be related to x as 

1 

sin2 ~ = (df/dx) 2 + 1 (17) 

dL = ((df/dx) 2 + 1) 1/2 dx (18) 

It is assumed that ~ increases monotonically from zero 
to n as x increases from zero to xo, and that the 
configuration of the undulating element has a mirror 
symmetry with respect to the plane x = Xo/2. Then 
a fractional length dL/Lo having orientation angles 
between ~ and ~ + d~ is given by 

dL 
- 2n sin ~ 9(4) a t  (19) 

Lo 

Hence, we have 

i: ~ io Xo = s in~dL = 2rcLo sin2~g(~)d~ (20) 

;0 ;0 f =  cos~dL = 2nL0sin~cos~g(~)d~ (21) 

Substituting these equations into Equation 16, and 
applying Equation 2 leads to the tangent modulus 

Ef 2 (m + 3) s 11 

( 0)2 6 
+ - -  n(m + 2) 

(22) 

It is noted in Equation 12 that the cross-section of the 
undulating ribbon is assumed to be perpendicular to 
the centreline before and after deformation. This as- 
sumption may not hold if the compliance s44 for shear 
between carbon layers is sufficiently large. In the case 
where sr is sufficiently large, the individual carbon 
layers deform independently without interacting with 
each other and the tangent modulus is calculated by 
an equation Obtained by replacing h in Equation 22 
with a thickness of a single carbon layer. 



3. 1.2. Zigzag ribbon model 
In the zigzag ribbon model schematically shown in 
Fig. 4, it is assumed that the equidimensional crystal- 
lites are linked end to end to form a zigzag ribbon 
extending parallel to the fibre axis. Each crystallite is 
comprised of carbon layers stacked in parallel to 
a crystallite axis connecting two linking points at the 
ends of a crystallite. The normal of the carbon layers is 
in a plane defined by this crystallite axis and the fibre 
axis. The crystallite has a cross-sectional area A per- 
pendicular to the crystallite axis, and the length of the 
crystallite axis is denoted as L. 

When the tensile force F applied to both ends of this 
assembly of crystallites increases by dF, the crystallite 
is extended along the crystallite axis by dL. Simulta- 
neously, the crystallite is rotated by an angle d E in the 
plane defined by the crystallite axis and the fibre axis. 
The angle d t is assumed to be proportional to the 
increment of the shear stress dcqa along the cross- 
section of the crystallite. That is, 

d L  = L S l l  d u l l  (23) 

dE = rssdu13 (24) 

where the suffix 1 represents the direction parallel to 
the layer plane, u, 1 the tensile stress, s, 1 a component 
of the compliance matrix, and rs s a compliance for the 
rotation of the crystallite, relating the bending rigidity 
of the links or the resistance from surrounding mate- 
rials. If dE is proportional to the shear force then rss is 
proportional to A, and if dE is proportional to the 
bending moment at the links then rss is proportional 
to L A .  

The projection length of a crystallite onto the fibre 
axis is sin EL. This projection length changes with the 
extension and the rotation of a crystallite by sin t dL 
and cos ELd E, respectively. The whole projection 
length of the assembly equals the sum of the projection 
lengths of respective crystallites. Also, the extension of 
the assembly is given by the sum of the increments of 
the projection lengths of respective crystallites. There- 
fore, the strain err of the assembly is given by 

(sin E dL + cos E L dE) 
dg f f  = 

(sin E L) 

(s in t  sl~ dul l  + cosErs5 du13) 
= (25) 

(sin t )  

The area of a crystallite cross-sectioned perpendicu- 
larly to the fibre axis is A/sin E. A crystallite with this 
cross-sectional area has a length of sin E L along the 
fibre axis. Hence, the average area A* of the assembly 
cross-sectioned perpendicularly to the fibre axis is 
given by 

A* = ( s i - ~  s i n t L )  _ A 
(26) 

(sin E L) (sin E) 

By using the average area, the increment of an average 
tensile stress doff is represented as 

dF _ (sin E) dF (27) 
d u f f -  A* A 

Thus, 

sin t dF sin t 
dul l  = - -  - d o f f  (28) 

A (sin t )  

cos t dF cos t 
d u 1 3  - - d o f f  (29) 

A (sin E) 

Therefore, the tangent modulus E f  of the assembly is 
given by 

1 deft (sin2E) ( cOs2 E) 
E~ = doff (sinE) ~ sll + (cosE)2 rss 

By applying Equation 2, 

1 co4(m q- 2) 3 

Ef 4(o + 1)'*(m + 3) 

(30) 

( 1 )  
X $11 -{- fD + - 2 r 5 5  

1 
~sl l  + ~ v ~  rss (31) 

o) -r A 

The relation between the orientation angle and the 
tensile stress is obtained from Equations 24 and 29 as 

dE rs5 
cos ~ (sin t )  

- -  d u e f ~ r s s  duff (32) 

Integrating the above equation leads to 

tan (~ + 4 )  = tan ( ~  + 4 )  exp(rss uff ) (33) 

where to is the initial orientation angle of a crystallite. 
When the assembly is subjected to tensile stress, the 
crystallites with orientation angles in a range from 
t0 to to + ~E0 rotate into a range from E to E + ~E. 
Simultaneously, the orientation distribution changes 
from the initial function g0(Eo) to 9(E). From the con- 
servation in the number of crystallites, 

2re sin Eo go(Eo)ato = 2re sin r g(r aE 

Thus, 

(34) 

sin to ~Eo 
g(t) - g0(r (35) 

sin t ~t 

Differentiating Equation 33 with respect to t at a con- 
stant uff gives 

aEo 
�9 exp ( r 5 5 u f f )  

f 

x ]- exp(_2 2,'ss.____~fj! ~ 1 

tan2 4 l ( ) xp, + 1 + 1) (36) 

Therefore, the crystallite orientation at a stress uff is 
obtained by using these equations. That is, the values 
of Eo and ~Eo/OE are calculated by Equations 33 and 
36 using the values of E and uff. The value of g0 (Eo) is 

4 5 2 5  



calculated by Equation 2 using the value of ~o- Then 
g(~) is calculated by Equation 35, and the orientation 
parameter is obtained according to the definition of 
Equation 9. 

3. 1.3 Series elements model  
In the series elements model shown in Fig. 4, the 
crystallites with a constant transverse cross-sectional 
area are combined in parallel to the fibre axis with 
a strong bond. Hence, when the assembly is subjected 
to a tensile stress, all the crystallites experience the 
same tensile stress. 

Denote the length of the assembly by L, applied 
tensile stress by (~ff, and resulting tensile strain by sff. 
Then, the extension of the assembly Lr equals the 
sum of the extensions of respective crystallites. Since in 
an assembly the fractional length of crystallites with 
orientation angles from ~ to ~ + d~ is given by 
2rr sin ~ g(~) L d~, the extension of the assembly is ex- 
pressed as 

g~f f  = ~Ls f fo ' f f )  (37) 

In Equation 37, sff is the compliance in the fibre axis 
direction of a crystallite with an orientation angle ~. 
This compliance is calculated by a coordinate trans- 
formation of the compliance matrix s u as 

Sff = ($11 - -  2s13 + s33 - s44)sin4~ 

4- (2S13 - -  2S33 4- s44)s in2~ 4- s33 (38) 

where the suffix 3 stands for the normal direction of 
the carbon layers, and the suffices 1 and 2 stand for the 
orthogonal directions in the layer plane. Therefore, by 
using Equation 2, the tangent modulus Ef  of the as- 
sembly is represented as 

E f  1 = ( s i n 4 ~ > ( s i l  - 2 s i3  + $33 - $44.) 

+ (sine~>(2st3-  2s33 4- S44 ) 4- S33 

where 

(39) 

(sin4~) = (m + 4)(m + 2) (40) 
(co + 5)(co + 3) 

m + 2  
(sinZ~) - (41) 

c0+3 

3. 1.4. Series rotatable elements model  
Equation 39 represents the relationship between the 
tangent modulus and the crystallite orientation, but 
does not describe the relationship between the crystal- 
lite orientation and tensile stress. Northolt et  al. [6] 
have derived the crystallite orientation as a function of 
tensile stress from a geometrical consideration on cu- 
bic-shaped crystallites. This model by Northolt et al. 

will be called a series rotatable elements model for 
convenience, and a brief outline of the derivation by 
using a coordinate transformation is given below. 

The series rotatable elements model, shown in 
Fig. 4, starts from the same assumptions as those 
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adopted for the series elements model. In addition, the 
rotation angle d~ of a crystallite due to a small in- 
crement of tensile stress dc~ff of the assembly is as- 
sumed to be equal to the increment of shear strain deis 
of a crystallite. That is, 

d~ = dsi3 = si3itd(~il 4- si333d(y33 

+ st313dcYla + s1331do'31 (42) 

With the crystallites in carbon fibres, the components 
of the compliance tensor si 31 t and si 333 are zero, and 
$1313 and S~3sl are one quater those of s55 and of $44. 
In addition, by a coordinate transformation, 

Hence, 

d%3 = d(~3a = cos ~sin~dr~ff (43) 

d~ 1 
--  $44 d(yff (44) 

cos ~ sin ~ 2 

Integrating the above equation and approximating 
tan2~ with cos-z~ leads to 

cos2~ = cos2~o e x p ( -  s44c~fr) (45) 

where ~o is the initial orientation angle. By averaging 
cos2~ for all the crystallites, 

( cos2 ~) = (cos z ~o> e x p ( -  s44off ) (46) 

The compliance of a crystallite and of the assembly are 
given respectively by Equations 38 and 39: By repres- 
enting sin~ in Equation 38 by using cos~ and by 
taking into account that for carbon fibres with a high 
crystallite orientation, st i and s13 <<$44, and 
cos 4 ~<<cos z ~, Equation 39 becomes 

E f t  --  $11 Jr- $44~c0s 2~)  

= sil  + s44(cos2~0)exp(- S4.40"ff) 

(47) 

If the crystallite orientation distribution is represented 
by Equation 2, (cos 2~> is related to the orientation 
parameter FI as 

1 
(c~ ~> = In 2 (48) 

3 
In Esin(rcH/2)3 

It should be noted that Equation 42 is valid only when 
the direction with an angle re/4 against the 1 and 3 axes 
does not rotate by tensile stress. In this regard, the 
series rotatable elements model does not take into 
account the rotational displacement of the 1 and 
3 axes which possibly arises in an assembly under 
tensile stress. 

3. 1.5. Parallel elements model  
In the parallel elements model shown in Fig. 4, the 
crystallites with a constant length perpendicularly to 
the fibre axis are combined transversely with a strong 
bond. So that when the assembly is subjected to a ten- 
sile stress, all the crystallites experience the same ten- 
sile strain. 



A(yff = <Asf71sff> (49) 

1.0 

and the tangent modulus Ef of the assembly is repre- 
sented as 

= < s f i  (50) 

where sft is given by Equation 38. This model implies 
that considerable stress differences may occur among 
the crystallites [6]. 
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3.2 Stress appl ied to crystallites 
Carbon fibres include microvoids and unorganized 
carbons other than the crystallites [15]. Hence, by 
denoting a correction factor as v, the tensile stress 

measured for carbon fibres may be related to the 
tensile stress (yff of the crystallites as, 

= v ~ff (51) 

Similarly, the tangent modulus E of carbon fibres is 
related to the tangent modulus Er of the crystallites as 

E = vEf (52) 

In the present study, correction factors obtained by 
two different ways, one being a correction factor 
vc determined from X-ray diffraction and the other 
being a correction factor va calculated as the ratio of 
the fibre density to the crystallite density, will be 
applied for the mechanical models. The correction 
factor vo is a volume fraction of crystallites in carbon 
fibres, and was determined from the intensity distribu- 
tion of the 002 X-ray diffraction peak by the method 
described in a previous paper [15]. The correction 
factor va has been adopted in a number of papers that 
discuss the mechanical properties of carbon fibres. 

The values of vc and va obtained for a series of 
carbon fibres are shown as a function of Ho in Fig. 5. 

3.3 Parameters  for evaluat ing models  
In order to evaluate the applicability of mechanical 
models, an average rate of increase in the tangent 
modulus with tensile stress AE/Ac~ which is defined as 

A E _  I ~:rr (~E~ d~ E r -  Eo 
(53) 

Ao- J0 \So'J 

is introduced. In Equation 53, Eo and Er are the 
tangent moduli at zero tensile stress and at a tensile 
stress o r corresponding to 40% of the tensile strength. 
Similarly, an average rate of increase in the crystallite 

Figure 5 Crystallite volume fraction vo, ratio of fibre density to 
crystallite density va, and the correction factor determined by mo- 
saic model plotted against initial orientation parameter [I o. 
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Denote the transverse cross-sectional area of an 
assembly by A, the tensile stress by o'ff, and the tensile 
strain by stf. Then, the tensile force A~ff  of the 
assembly equals the sum of the tensile forces of re- 
spective crystallites. Since in a transverse cross-section 
of the assembly, a fractional area of the crystallites 
with orientation angles in a range from ~ to ~ + d ~ is 
given by 2rcsin~ g(~)Ad~, the tensile force of the as- 
sembly is expressed as 

I I I 

0.80 0.85 0.90 
Initial or ientat ion parameter,  H 0 

Figure 6 Tensile strength of PAN-based carbon fibres plotted 
against initial orientation parameter [I o. 

orientation with tensile stress AII/Ac~ defined as 

(54) 

is also introduced, where II, is the crystallite orienta- 
tion at the tensile stress (Yr. These parameters AE/Ac~ 
and AII/A~ are suitable for representing the tangent 
modulus and crystallite orientation changes in a rela- 
tively wide stress range where the stress-strain re- 
sponse is reversible. 

In Figs 6 and 7, the tensile strength and the values 
of AE/Ac~ and AII/Acy obtained experimentally for 
various carbon fibres are plotted against IIo. The 
straight line in Fig. 7 represents a regression line with 
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Figure 7 Average rate of increase in tangent modulus  with tensile 
stress AE/A~ and in orientation parameter AH/Acy plotted against 
initial orientation parameter r i  o . Regression line with slope 
0.030 G P a -  1 and passing through (I1o, AII/Aa) = (1, 0) is shown. 

Compliance (GPa -  1) Stiffness (GPa) 

sl l  9.8 x 10 -4  cl l  1060 
$12 - -  1.6 x 10 -4 c,2 180 
s13 - 3.3 x 10 4 cl3 15 

$33 2.8 X 10 -2 c3a 37 
s44 5.6~2.9 c44 0.18~0.35 

determined at a value which makes the value of Eo, 
calculated by Equation 31 using the value of rss, 
consistent with the experimental result. By using the 
values of Sli and rs5 as determined above, g r  w a s  

calculated by Equation 31, and the value of AE/Ac 
was obtained. 

3.4.3 Series elements model 
In Equation 39 representing the tangent modulus ver- 
sus crystallite orientation for the series elements 
model, the compliance s , ,  is assumed as an adjustable 
parameter. For the compliances s11, s13 and s33, the 
compliances for graphite listed in Table I [19] were 
used. The compliance s44 was determined at a value 
which makes the value of Eo, calculated by Equation 
39 using an experimental value of Re, consistent with 
the experimental result. Then the parameter AE/A~ 
was calculated by Equation 39 using the compliances 
sl 1, s13, sa3 and s44, and an experimental value of Fir. 

a slope 0.030 GPa- t  and passing through the point 
(no, ari/A~) = (1, 0). 

3.4 Calculation of one-dimensional array 
models 

3.4. 1 Undulating ribbon model 
The tangent moduli Er and Eo for the undulating 
ribbon model were calculated by Equation 22 using 
experimental values of rio and Fir. For the purpose of 
studying the applicability of this model to experi- 
mental results, the ratio of EjEo rather than the para- 
meter AE/Ao is suitable, since the compliance sll is 
eliminated from Er/Eo, as known from Equation 22. 
The value of Er/Eo calculated by using Equation 22 is 
a function of Lo/h and becomes larger with increasing 
Lo/h. However, the changes in EJEo with Lo/h larger 
than 100 is less than 0.1%. Thus, an infinitely large 
value was assumed for Lo/h. 

3.4.2 Zigzag ribbon model 
With the zigzag ribbon model, the expressions relating 
the tangent modulus and the crystallite orientation to 
the tensile stress given by Equations 31 and 35 involve 
two compliances sit and rss. The compliance rss was 
determined so that the value of Fir calculated by 
Equation 35 using an experimental value of He was 
consistent with the experimental result. Then sll was 
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3.4.4 Series rotatable elements model 
The tangent modulus and the crystallite orientation 
versus tensile stress relations for the series rotatable 
elements model represented by Equations 46 and 47 
involve two compliances st1 and s44. The compliance 
s44 was determined by Equation 46 using experi- 
mental values of Fie and Hr. Then the compliance 
Sll was determined by Equation 47 using the value of 
sr162 and experimentally obtained Eo. The parameter 
AE/A(~ was calculated by Equation 47 using sll and 
s44 thus determined. 

3.4.5 Parallel elements model 
The parallel elements model represented by Equation 
50 involves four compliances s11, s13, s33 and s44. For 
the compliances sl 1, sl 3 and s33 the values of graphite 
were used. The compliance s44 was determined by 
Equation 50 using experimental values of Eo and He. 
Then using this value of s44 and experimentally ob- 
tained I ~  r the parameter AE/Acr was calculated by 
Equation 50. 

3.5 C o m p a r i s o n  with  e x p e r i m e n t a l  resul t s  
In Fig. 8, the values of Er/E o calculated by the undula- 
ting ribbon model are compared with the experi- 
mental values. Fig. 8 indicates that this model gives 
considerably smaller values of Er/Eo than the experi- 
mental values. 
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Figure 8 Ratio of tangent modulus at 40% of tensile strength to 
that at zero stress calculated by undulating ribbon model plotted 
against experimental values. Lo/h was taken to be infinitely large. 

Values of  the compl iances  of the zigzag r ibbon,  
series elements,  series ro t a t ab l e  elements,  and  para l le l  
e lements  models  ca lcu la ted  using vc and  va are shown 
in Tab le  II. In  Fig. 9 the AE/A~ values ca lcu la ted  by 
these models  using vc and  va are c o m p a r e d  with the 
exper imenta l  results. As is shown in Fig. 9, the AE/Aq 
values ca lcu la ted  with the models  are cons iderab ly  
smal ler  than  the exper imenta l  values. The  difference 
between the ca lcu la ted  and  exper imenta l  values is 
scarcely affected by the magn i tude  of the cor rec t ion  
factors.  

I t  should  be concluded,  therefore,  that  the one-di -  
mens iona l  a r r a y  mode l s  canno t  represent  the non-  

hookean stress-strain response of carbon fibres asso- 
ciated with the crystallite orientation changes with 
tensile stress. 

4. Mosaic model for non-hookean 
stress-strain response with 
orientation changes 

From the above analysis, it is clear that in order to 
explain the increase in the tangent modulus with ten- 
sile stress for carbon fibres, a mechanism that con- 
strains the deformation of the crystallites with increas- 
ing tensile stress, in addition to the mechanism of 
increasing the crystallite orientation, is required. For 
this purpose, a model which will be called a mosaic 
model henceforth is proposed and its validity is dis- 
cussed in the following subsections. 

4.1 C o n s t i t u t i o n  of  m o s a i c  m o d e l  
In the mosaic model shown in Fig. 4, it is assumed that 
the equidimensional cubic crystallites are arranged in 
a two dimensional array forming a hexahedral assem- 
bly. The deformation of this assembly subjected to 
a tensile force is analysed by a finite element method 
(FEM).  

In the assembly,  16 x 16 x 1 crystal l i tes are  a r r anged  
in the longi tudinal ,  the t ransverse  and  the thickness 
di rect ions  respectively where the long i tud ina l  direc- 
t ion is defined as being para l le l  to the fibre axis. We  
denote  the vectors  defining three ne ighbour ing  edges 
of a crystal l i te  in the longi tudinal ,  the t ransverse  and  
the thickness di rect ions  as Xi, Yi and Z,., respectively.  
In a con t inuous  d i s t r ibu t ion  of o r ien ta t ion  angle ~, 
which is measured  wi thout  app ly ing  a tensile stress to 
the fibres, a range of { where the layer  no rmal s  
main ly  popu la t e  is d iv ided  into 15 sections. Then 

in GPa units of zigzag ribbon, series elements, series rotatable elements and parallel elements models calculated TABLE II Compliances 1 
with vo and va. 

II0 Zigzag ribbon Series Series rotatable Parallel 
elements elements elements 

S1 I 1"55 $44 S11 $44 Sd-4 

Calculated with vc 

0.7960 0.0018 
0.80ll 0.0015 
0.8129 0.0011 
0.8231 0.0014 
0.8251 0.0015 
0.8667 0.0014 
0.8900 0.0016 
0.9022 0.0015 

0.011 0.026 0.0013 0.020 
0.013 0.024 0.00089 0.024 
0.013 0.015 0.00052 0.023 
0.015 0.026 0.00080 0.027 
0.017 0.031 0.00083 0.031 
0.015 0.031 0.00095 0.030 
0.016 0.052 0.0013 0.031 
0.021 0.055 0.0011 0.041 

0.083 
0.073 
0.035 
0.070 
0.089 
0.071 
0.13 
0.13 

Calculated with va 
0.7960 0.0031 
0.8011 0.0025 
0.8129 0.0021 
0.8231 0.0021 
0.8251 0.0020 
0.8667 0.0020 
0.8900 0.0022 
0.9022 0.0018 

0.019 0.062 0.0022 0.034 0.33 
0.022 0.055 0.0015 0.04~J 0.26 
0.025 0.054 0.0010 0.046 0.24 
0.022 0.052 0.0012 0.041 0.21 
0.022 0.050 0.0011 0.042 0.20 
0.023 0.064 0.0014 0.044 0.22 
0.021 0.087 0.0018 0.041 0.30 
0.027 0.085 0.0014 0.052 0.25 
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Figure 9 Average rate of increase in tangent modulus with tensile 
stress AE/Ac~ calculated by; (o) zigzag ribbon, (A) series elements, 
(V) series rotatable elements and ([5) parallel elements models 
plotted against experimental values. Volume fraction of crystallites 
vo and ratio of fibre density to crystallite density va were used as 
correction factor v. 

a discrete orientation distribution whose <cos z ~) 
value is consistent with the experimental value is ob- 
tained. The discrete orientation distribution obtained 
thus is arranged to 256 crystallites in a random man- 
ner. A stiffness matrix of a crystallite with orientation 
angle ~ is obtained from the stiffness matrix produced 
fi'om the principal axes of the crystallite by a coordi- 
nate transformation. This coordinate transformation 
is made by rotating a principal axis parallel to the 
layer normal by an angle ~ against the X~ vector in the 
X~ - Y~ plane. The vector X~ for the initial state of the 
assembly before deformation is parallel to the fibre 
axis. When the assembly is subjected to a tensile force, 
the X~, Y~ and Z~ vectors rotate and are no longer in 
general orthogonal after deformation. The rotation 
angle of the carbon layer due to the tensile force is 
defined as the angle made between the fibre axis and 
the X~ vector after deformation. 

In the FEM calculation, a multiple point constraint 
is applied to the nodes on the contour of the assembly 
so that the four sides of the assembly parallel to the 
thickness displace, keeping the planarity, according to 
tensile force. 

The trajectory of the X~, u and Z~ vectors 
during deformation is calculated by a so-called update 
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Figure 10 Average rate of increase in tangent modulus with tensile 
stress AE/AG and in orientation parameter AII/Ac~ calculated by 
the mosaic model plotted against stiffness c4,. Correction factor 
v was taken to be unity. The values of Ilo used were ( . . . .  ) 0.75, 
~ - - )  0.80, ( . . . .  ) 0.85, ( . . . .  ) 0.90 and ( ) 0.95. 

Lagrange method. That is, by applying a small exten- 
sion to the initial state of the assembly, the resultant 
tensile force of the assembly and the rotation angles of 
respective crystallites are calculated. Then, as the sec- 
ond extension, a small extension is further applied to 
the deformed assembly, and the resultant tensile force 
and the rotation angles are calculated. The sum of the 
tensile forces and of the rotation angles for the first 
and the second extensions are the tensile force and the 
rotation angles yielded by the extension from the 
initial state to the second extension. These procedures 
are iterated until the required extension is achieved. 
The tangent modulus is calculated from the increase in 
extension and in tensile force at each step. The ori- 
entation parameter is calculated by Equation 48 using 
the (cos 2 ~) value of the 256 crystallites. 

4 .2 .  A p p l i c a t i o n  o f  m o s a i c  m o d e l  
In applying the mosaic model to experimental results, 
the correction factor v and the stiffness e44 were as- 
sumed to vary amongst different types of carbon 
fibres. For  the stiffnesses other than c44, the values for 
graphite were adopted. The changes of AE/Ac~ and 
AI-I/Ac~ with c44 calculated by the mosaic,model using 
v = 1 and various values o f I I  0 are shown in Fig. 10. It 
can be seen from Fig. 10 that in comparison with 
AI-I/Acy the changes of AE/Acy with c44 are easy to 
detect. Hence, when determining a value of c~4, it is 
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Figure ll Stiffness c44 calculated by the mosaic model plotted 
against initial orientation parameter Flo. 
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Figure 12 Average rate of increase in orientation parameter with 
tensile stress Al-I/Acr calculated by the mosaic model plotted against 
experimental values. 

preferable to utilize the AE/Acy versus c44 relation in 
order to minimize any possible error. 

Values of v and c44 for carbon fibres were deter- 
mined by the following procedure. Firstly, by assum- 
ing a value of c44, v was obtained so that a value of Eo, 
calculated using an experimental value of Ho, co- 
incided with the experimental result. Secondly, the 
tensile stress ~r was calculated using the value of v and 
the tensile strength of the fibre. Thirdly, the parameter  
AE/A~ was calculated by using %, v and the assumed 
value of c44. Fourthly, by changing the value of 
c44 and iterating similar calculations, the relation be- 
tween c ~  and AE/Ac~ was obtained. Finally, the 
values of c44 and v were determined at the values 
which gave AE/Ac~ consistent with the experimental 
result. 
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Figure 13 Tangent modulus E and orientation parameter YI of 
a carbon fibre with initial orientation parameter 0.867 plotted 
against tensile stress cr of fibre. Curves were calculated by the 
mosaic model. 

The values of v and c44 obtained for various carbon 
fibres are plotted against I10 in Figs 5 and 11, respec- 
tively. Fig. 5 indicates that the correction factor cal- 
culated from the mosaic model gives a value closer to 
the crystallite volume fraction vc rather than the den- 
sity ratio va. It has been reported that in the case of 
graphite the stiffness c~4 differs according to prepara-  
tion conditions of graphite and shows various values 
in a range from 0.1-5 G P a  [61. In Fig. 11 the values of 
c44 are distributed in a range similar to that reported 
for graphite and their average is about  3 GPa.  In 
Fig. 12 the AI-I/A~ values calculated by the mosaic 
model are plotted against the experimental values. 
The calculated values are in good agreement with the 
experimental values. 

In Fig. 13 typical examples of mosaic model calcu- 
lations on the changes of the tangent modulus and the 
crystallite orientation with tensile stress are shown 
together with the measured values. It is noted that the 
mosaic model closely predicts the parabolic nature 
observed experimentally in those relations. 

5 .  C o n c l u s i o n  

Amongst various one-dimensional array models and 
a mosaic model, only the mosaic model gave a quant- 
itative agreement with the measured increases in the 
tensile modulus and the crystallite orientation with 
tensile stress. The parabolic nature found in those 
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relations was also predicted by the mosaic model. This 
suggested that the deformation of the crystallites is 
constrained with increasing tensile stress. It was also 
found that the ratio of the tensile stress of the fibre to 
that of the crystallites is close to the crystallite volume 
fraction rather than the ratio of the fibre density to the 
crystallite density. 
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